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Y Parameterization g

* Informal definition: finding a function f : (u, v) € R® — R’
that "describes" a surface (= 2-manifold) in 3D space

* The region of "useful" (u,v) values is called parameter domain (mostly [0,1]?)
* Example: a possible parameterization of the sphere (with the well-known problems)
cos(2mu) sin(mv)

f(u,v) = sin(27ru() sin)(wv) - (u,v) €0, 1]

* In computer graphics:
e Surface = mesh,

* Function = (u,v) coordinates for vertices, linear interpolation in-between

 "Texturing", "uv mapping"
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e Distortions in size & form
over- or under-sampling

* Consequence: relative

Y Problems with (Simple) Parameterizations
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U One Technique to Remedy: Seams ("Nahte")

* Idea: cut up the mesh along certain edges and unfold it into a plane (aka.
surface development or unwrapping)

* Results in seams, i.e. "double edges" in the parameter domain (aka. uv space)

* Unavoidable with non-planar topology, e.q., closed 2-manifolds
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* Cut the object along only one contiguous sequence of edges (preferably at
inconspicuous places)

 Effect: the resulting mesh is now topologically equivalent to a disc

* Then embed this open mesh into the 2D plane
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e Goal: minimize the distortion

e Straight-forward remedy: multiple seams

e Problem: produces a severely fragmented embedded grid

21
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* Another problem with seams: vertices on the seam must have multiple,
different (u,v) coordinates

* Remedy: create multiple copies of those vertices

* New problem in case of deformations of the mesh
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U Dichotomy: Distortion or Seams

Seams

uonJolsig

Texture Atlas:
« Small number of patches
=« Short and hidden seams
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U The Texture Atlas

e |dea:

e Cut the 3D surface into individual patches

* Map = individual parameter domain in texture space
for a single patch

e Texture Atlas = set of these patches with their
respective maps (= parameter domains)

* Statement of the optimization problem:

* Choose a compromise between seams and distortion
* Hide the cuts in less visible areas
* How do you do that automatically?

* Determine a compact arrangement of texture
patches (a so-called packing problem)
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Y Digression: A Geometric Brain-Teaser

e A cube can be unfolded into a cross

* Into what other forms can a cube be unfolded, too?
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e Side note: the (unfolded)
cube can be folded into a
parallelogram
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Y Cube Maps

e Parameter domain = surface of unit cube
 Six quadratic texture bitmaps
* 3D texture coordinates in (old) OpenGL:

glTexCoord3f( s, t, r );
glVertex3f( x, y, z );

* Largest component of (s,t,r) determines the cube
side = bitmap, intersection point determines (u,v)
within the bitmap

* Rasterization of cube maps:
1. Interpolation of (s,t,r) in 3D
2.Projection onto the cube — (u,v)
3.Texture look-up in 2D

* Pro: relatively unitorm, OpenGL support

 Slight con: needs 6 images
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Y Examples
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Y Cube Maps in OpenGL Just FYI (not relevant for exam)

glGenTextures( 1, &texturelD );
glBindTexture ( GL TEXTURE CUBE MAP, texturelID );
glTexImage2D( GL TEXTURE CUBE MAP POSITIVE X, O, GL RGBA8, width, height,
O, GL RGB, GL UNSIGNED BYTE, pixels faceQ );

Load the texture of the other cube faces

glTexParameteri ( GL TEXTURE CUBE MAP, Analog:
GL TEXTURE WRAP S, GL CLAMP TO EDGE ); «+—— GL_TEXTURE_MAG_FILTER,
— — — — - - GL TEXTURE WRAP T,
Set more texture parameters, like filtering . - -

etc.
glEnable ( GL TEXTURE CUBE MAP ) ;
glBindTexture ( GL TEXTURE CUBE MAP, texturelD ) ;
glBegin( GL ... );
AT e &, (B D - Just like with all other vertex attributes in OpenGL:

first send all attributes, then the coordinates

glVertex3f( ... )
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@ Example Cube Map for a Sky Box
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Y Texture Atlas vs. Cube Map

Textu /
Patch @
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U Texture Atlas vs. Cube Map

= Must prevent seams manually

=« No seams, automatically

* E.g., by making colors match across * Because there are no gaps in the
seams parameter domain

=« MIP-mapping is difficult =« MIP-mapping is okay
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= Must prevent seams manually = No seams, automatically

= Triangles must lie inside patches = Triangles can cross multiple patches
= MIP-mapping is difficult = MIP-mapping is okay

= Only valid for a specitic mesh = Valid for many meshes

= Texels are wasted = All texels are used
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Y Polycube Maps

* Use many cube maps instead of a single cube — polycube map

* Adapted to geometry and topology
N
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Y Examples
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Environment Mapping

* With very reflective objects, one would like to
see the surrounding environment reflected in
the object

* Trivial in ray-tracing, but not for polygonal
rendering by rasterization

* The idea of environment mapping:

e "Photograph" the environment in a texture, and
store as a cube map (aka. environment map)

* Use the reflection vector (of the eye ray) as an
index into that texture (a.k.a. reflection mapping)
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* For every spatial direction, the

environment map saves the color of the ‘<'
light that reaches a specific point " )
WA

* Only correct for one position ‘

o
L

* No longer correct if the environment

changes %/\ —
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Historical Examples of Applications

Lance Williams, Siggraph 1985

G. Zachmann Computer Graphics 2

SS

Flight of the Navigator (1986)
First feature film to use the technique
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Terminator 2: Judgment Day
(1991, Industrial Light + Magic)
Most visible appearance
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Y Environment Mapping Steps

* Generate or load a 2D texture that depicts the environment
* During rasterization, for every pixel on the reflected object:
1. Calculate the normal n and the view vector v
2. Calculate a reflection vector r from n and v
3. Calculate texture coordinates (u,v) from r
4. Color the pixel with the texture value (texel)
* The problem: how does one parameterize the space of the reflection vectors?
* |l.e.: how do you map spatial directions (= 3D unit vectors) onto [0,1]x[0,1]?
* Desired characteristics:

e Uniform sampling (number of texels per solid angle should be "as constant as
possible" in all directions)
* View-independent — only one texture for all viewpoint positions

e Hardware support (texture coordinates should be easy to generate)
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Y Cube Environment Mapping

* Justlike "normal" cube maps, except use the reflected vector r = (rx, ry, Iz) =
(s, t, 1)

* This reflected vector r could be automatically calculated by fixed-function
OpenGL for each vertex (G REFLECTION MAP)
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Y Older Technique: Sphericleénvironment Mapping

* Sometimes, a cube map cannot be use,
depending on the way the environment map is

generated

* Generating the environment map with a sphere:

* Photography of a reflective sphere; or

e Ray-tracing of the scene

G. Zachmann

with all primary rays
being reflected

at a perfectly
reflective sphere
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@ Mapping of the directional vector r onto (u,v) £ 3

* The sphere map contains (theoretically) a
texel for every direction, except r=(0, O, -1)

* Mapping:

v\ 1 Tonm)+Eo]
v) 2 ly |

I(re.ry,r2)+(0,0,1)]]

p—t
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W) FYI

* Application of the sphere mapping to texturing:

S~< Reflected View Vector
- S~ o (can be calculated

S~< ~ - automatically by
OpenGL, or manually in
the fragment shader)

View Vector

Texture Plane
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Simple Example
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Y  Pproblems

FYI

e Unfortunately, the mapping/sampling is not very uniform:
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* Speckles if the reflecting vector comes close to the
edge of the texture (through aliasing and "wrap-

around")

e Texture coords are interpolated linearly (by the - . 0 . .
rasterizer), but the sphere map is non-linear & g/ e o i
e 2D rasterization hardware doesn't know about sphere ", Flickers in animations.

maps, it just linearly interpolates texture coords
* Long polygons can cause serious "bends" in the
texture
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e Other cons:

* Textures are difficult to generate by program (other than ray-tracing)

* Viewpoint dependent: the center of the spherical texture map represents
the vector that goes directly back to the viewer!

* Can be made view independent with some OpenGL extensions

e Pros:

* Easy to generate texture coordinates

* Supported in OpenGL
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U Dual Parabolic Enviréfiment Mapping g

e |dea:

* Map the environment onto two textures via a reflective
double paraboloid

* Pros:

- Relatively uniform sampling

* View independent
* Relatively simple computation of texture coordinates

* Also works in OpenGL

* Also works in a single rendering pass (just needs multi-
texturing)

e Cons:

* Produces artifacts when interpolating across the edge
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Y Dynamic EnvironmeﬁY'I\/laps g

* Until now: environment map was invalid as soon as something in the
environmental scene had changed!

* |dea:

* Render the scene from the "midpoint" outward (typically 6x for a cube map)
* Transfer framebuffer to texture (using the appropriate mapping)
* Render the scene again from the viewpoint, this time with environment mapping

> Multi-pass rendering

* Typically used with cube maps — dynamic cube maps
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@J) Demo with Static Environment

N6 Cube Map Demo
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Dynamic Environment Mapping in OpenGL Using Cube Maps

Only for Your Information - Not Part of the Exam

g

GLuint cm size = 512; //

GLfloat cm dir[6]1[3]; //

float dir[6] [3] = {
1.0, 0.0, 0.0, //
-1.0, 0.0, 0.0, //
0.0, 0.0, -1.0, //
0.0, 0.0, 1.0, //
0.0, 1.0, 0.0, //
0.0, -1.0, 0.0 //

};

GLfloat cm up[6]1[3] = //

{ 0.0, -1.0, 0.0, //
0.0, -1.0, 0.0, //
0.0, -1.0, 0.0, //
0.0, -1.0, 0.0, //
0.0, 0.0, 1.0, //
0.0, 0.0, -1.0 //

}s

GLfloat cm center[3]; //

GLenum cm face[6] = {

texture resolution of each face
direction wvectors

right
left
bottom
top
back
front

up vectors
+X
-X
+ty
4
+z
-z

viewpoint / center of gravity

GL_TEXTURE CUBE MAP POSITIVE X,
GL_TEXTURE CUBE MAP NEGATIVE X,
GL_TEXTURE CUBE MAP NEGATIVE Z,
GL_TEXTURE CUBE MAP POSITIVE Z,
GL_TEXTURE CUBE MAP POSITIVE Y,
GL_TEXTURE CUBE MAP NEGATIVE Y

// define cube map's center cm center[] = center of object
// (in which scene has to be reflected)

G. Zachmann
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Only for Your Information - Not Part of the Exam

// set up cube map's view directions in correct order
for (uint 1 =0, 1 < 6; 1 + )
for ( uint j =0, J < 3; jJ + )
cm dir[i][j] = cm center[j] + dir[i][j];

// render the 6 perspective views (first 6 render passes)

for ( unsigned int i = 0; 1 < 6; i ++ )

{
glClear( GL _COLOR BUFFER BIT | GL DEPTH BUFFER BIT );
glviewport( 0, 0, cm size, cm size );
glMatrixMode ( GL PROJECTION ) ;

glLoadIdentity () ;

gluPerspective( 90.0, 1.0, 0.1, ... )
glMatrixMode ( GL MODELVIEW ) ;
glLoadIdentity () ;

gluLookAt( cm center[0], cm center[l], cm center[2],
cm dir[i] [0], em dir[i][1], cm dir[i] [2],
cm up[i] [0], cm up[i][1l], cm up[i][2] );

// render scene that should appear later as reflection

// read-back into corresponding texture map
glCopyTexImage2D( cm face[i], 0, GL RGB, 0, 0, cm size, cm size, 0 );

G. Zachmann Computer Graphics 2 SS  June 2025 Advanced Texturing
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Only for Your Information - Not Part of the Exam

// cube map texture parameters init

glTexEnvf( GL TEXTURE ENV, GL TEXTURE ENV MODE, GL MODULATE ) ;
ngexParameterl( GL_TEXTURE_CUBE_MAP GL TEXTURE WR.AP S, GL CLAMP ) ;
glTexParameteri ( GL TEXTURE CUBE MAP, GL TEXTURE WRAP T, GL CLAMP ) ;
glTexParameterf ( GL TEXTURE CUBE MAP, GL TEXTURE MAG FILTER, GL LINEAR ) ;
glTexParameterf ( GL TEXTURE ¢ CUBE MAP, GL TEXTURE | MIN FILTER, GL NEAREST) ;
glTexGeni ( GL S, GL TEXTURE GEN MODE, GL_REFLECTION MAP ) ;

glTexGeni ( GL_T, GL TEXTURE GEN MODE, GL REFLECTION MAP );

glTexGeni ( GL R, GL TEXTURE GEN MODE, GL_REFLECTION MAP );

// enable texture mapping and automatic texture coordinate generation
glEnable ( GL TEXTURE GEN S );

glEnable ( GL_TEXTURE GEN T ) ;

glEnable( GL TEXTURE GEN R ) ;

glEnable ( GL_TEXTURE CUBE MAP ) ;

// render reflective object in 7th pass

// disable texture mapping and automatic texture coordinate generation
glDisable ( GL TEXTURE CUBE MAP );

glDisable( GL TEXTURE GEN S );

glDisable( GL TEXTURE GEN T ) ;

glDisable( GL TEXTURE GEN R ) ;

'in Eye-Koord.

Berechnet den
Reflection Vector
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For Further Reading (On the course's homepage)

e "OpenGL Cube Map Texturing" (Nvidia, 1999)

* With example code

* Here several details are explained (e.g. the orientation)

* "Lighting and Shading Technigues for Interactive Applications" (Tom
McReynolds & David Blythe, Siggraph 1999);

* SIGGRAPH '99 Course: "Advanced Graphics Programming Techniques
Using OpenGL" (is part of the above document)
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Y Parallax Mapping

e
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EBEEGINNER COURSE GO .7

* Motion parallax: near/distant objects
shift differently relative to one another

* Problem with bump/normal mapping:

* Given: coarse 3D geometry + 2D texture + detailed height map

* Only the lighting is affected — the image of the texture on the surface remains
unchanged, regardless of the viewing direction

* Example of effect of motion parallax:
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* Goal: "take" motion parallax of a detailed oftset surface, Texture space
although we only render a coarse polygonal geometry T

* The general task in parallax mapping: u,\i\\
* Assume that scan line conversion is at pixel P (ut’ )

» Determine point P that would be seen along v

* Project P onto polygonal surface = P’
* Read texel at (u’, v') and write it into P

] A Eye vector
* Problem: how does one find P ?

Polygonal surface

Displacement
surface /
P Offset surface

D(u,v) —
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Simplest Idea

* We know the height D =D (u,v ) at point P = P(u,v)

e Use this as an approximation of D (u',v") in point P' = P'(u',v")

D sin 0 COS ¢ COS ¢ nv|
°* — =tanl = = — = — —
d cosf)  sing sing  |n X v| .
Vv
P’ P 0
d
. \
l ::D
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Y Improvement

e Let P = (u,v, D) with D= D(u,v)
» Approximate the heightmap in P by a tangent plane (similar to bump mapping)

» Calculate P = point of intersection between that plane and the view vector:

u u v
n v | +1tv— Vv = ( (U,|1_|V,) (U'X/polygon

0 D

N\

p

P
e Solve fort 1

* Then compute (u,> = (u> + tv’, with v' = (v, v,0) (i.e., proj. in pgon's plane)

"4 "4

* Additional ideas: iterate; approximate heightmap with higher order
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e Storage:

* Put the image in the RGB channels of the texture

e Put the height map in the alpha channel
* Process at rendering time:

 Compute P' (see previous slide)
* Calculate (u',v') of P' and lookup texel

e Perturb normal by bump mapping (see CG1)

* Note: today one can calculate directional derivatives for D,
and D, "on the fly" (needed in bump mapping)

* Evaluate lighting model with texel color and perturbed
normal
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@J) Alternative oo

* Do sphere tracing along the view vector, until you hit the offset surface

* If the heightmap contains heights that are not too large, it is sufficient to begin
relatively close underneath/above the plane of reference

* If the angle of the view vector is not too acute, then a few steps are sufficient

* For a number of voxel layers underneath the plane of reference, save the
smallest distance to the offset surface for every cell
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Y Example: Parallax Mapping vs Simple Texture Mapping

www.fraps.com

Right cube:
Phong lighting,
with normal and
parallax mapping

Left cube:
Phong lighting
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Y View-Dependent Displacement Mapping (VDM)

-
4 :r.
I.I

1 o
. CG =
VR

* Idea: precompute all possible texture coordinate "
displacements for all possible situations 4 /{v
- ;
* In practice: /
* Parameterize the viewing vector by (6, ¢) in the local \/\

e Precompute the texture displacement for all (u,v) and

all possible (6, ¢) ”

* E.g., by ray-casting of an explicit, temporarily
generated mesh of the offset surface

coordinate system of the polygon Z
03

e Carry out the whole procedure for a set of possible
curvatures c of the base surface

* Resultsin a 5-dim. "texture" (LUT): d(u,v,0, ¢, c)
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* Advantage: results in a correct silhouette
 Reason: d(u,v,0,¢,c)=—1 for many parameters near the silhouette

* These are the pixels that lie outside of the (true) silhouette!
* Further enhancement: self shadowing

* |dea is similar to ray tracing: use "shadow rays"

1.Determine P from D and 0,9 (just like before) — (u,v) displacement d

2.Determine vector I from P to the light source and calc 6;, ¢; from that

3. Determine P = (4", ") from P and 6, and ¢ 1 ) /

dH
4 .Make lookup in our "texture" D — d"’ O

S.Test: d” +d < ||(v”, v") — (u, v)|
— pixel (u,v) is in shadow, i.e., don't add light source in Phong model
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Y  Result

Bump Mapping

e Names:

 Steep parallax mapping, parallax occlusion mapping, horizon mapping, view-
dependent displacement mapping, ...

* There are still many other variants ...

 "Name ist Schall und Rauch!" ("A name is but noise and smoke!")
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More Results

G. Zachmann

Bump mapping
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Standard VDM
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@ All Examples Were Rendered with VDM
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